

 Signed Arithmetic in Verilog 2001 – Opportunities and Hazards

 Dr. Greg Tumbush, Starkey Labs, Colorado Springs, CO

 Introduction

Starkey Labs is in the business of designing and

manufacturing hearing aids. The new digital hearings aids

we design at the Starkey Labs Colorado IC Design Center

utilize very complex DSP algorithms implemented in both

software and hardware accelerators. The predominant data

type used in these algorithms is signed. The format of the

signed type is two’s complement. The designation of signed

and two’s complement is used interchangeably throughout

this document.

Verilog 2001 provides a very rich set of new signed

data types. However, there are issues when performing

operations such as sign extension, truncation or rounding,

saturation, addition, and multiplication with signed values.

These new data types (in theory) free the designer from

worrying about some of these signed data type issues. More

compact and readable code should result. However, in the

spirit of Verilog, usage of this new functionality is “user

beware”! Arithmetic manipulation between mixes of signed

and unsigned may simulate and synthesize in unintended

ways. Assignments between differently sized types may also

not result in what the designer intended. Does the usage of

signed data types in arithmetic operations result in smaller or

larger circuits?

Verilog 1995 provides only one signed data type,

integer. The rule is that if any operand in an expression is

unsigned the operation is considered to be unsigned. The

rule still applies for Verilog 2001 but now all regs, wires,

and ports can be signed. In addition, a numeric value can be

designated with a ‘s similar to the ‘h hex designation.

Signed functions are also supported as well as the type

casting operators $signed and $unsigned. There are many

new rules about when an operation is unsigned, and some

may surprise you!

In this paper I will provide code examples of how the

new signed data types can be used to create more compact

code if some simple rules are followed. RTL and gate level

simulation results of add and multiply operations using

mixtures of signed and unsigned data types will be provided.

Area results from synthesis using Design Compiler 2003.12

will be presented to compare efficiencies of these

operations. Synthesis warnings that should be investigated

thoroughly will be explained. Suggestions for improvement

in the Verilog 2001 language, such as saturation support,

will also be provided.

 Signed Data Types

 Table 1 demonstrates the conversion of a decimal value to

a signed 3-bit value in 2’s complement format. A 3-bit signed

value would be declared using Verilog 2001 as signed [2:0]

A;.

Decimal Value Signed Representation

3 3’b011

2 3’b010

1 3’b001

0 3’b000

-1 3’b111

-2 3’b110

-3 3’b101

-4 3’b100

Table 1: Decimal to 3-bit Signed

 Type Casting

The casting operators, $unsigned and $signed, only

have effect when casting a smaller bit width to a larger bit.

Casting using $unsigned(signal_name) will zero fill the

input. For example A = $unsigned(B) will zero fill B and

assign it to A. Casting using $signed(signal_name) will

sign extend the input. For example, A = $signed(B). If the

sign bit is X or Z the value will be sign extended using X or

Z, respectively. Assigning to a smaller bit width signal will

simply truncate the necessary MSB’s as usual. Casting to

the same bit width will have no effect other than to remove

synthesis warnings.

 Signed Based Values

The only way to declare a signed value in Verilog 1995

was to declare it as an integer which limited the size of the

value to 32-bits only[1]. Verilog 2001 provides the ‘s

construct for declaring and specifying a sized value as

signed. For example, 2 represented as a 3-bit signed hex

value would be specified as 3’sh2. Somewhat confusing is

specifying negative signed values. The value -4 represented

as a 3-bit signed hex value would be specified as -3’sh4. A

decimal number is always signed.

 Signed Addition

Adding two values that are n-bits wide will produce a

n+1 bit wide result. The signed values must be sign

extended. For example, adding -2 (3’b110) to 3 (3’b011)

will result in 1 (4’b0001). See the example in Figure 1.

 4'b1110 = -2
+ 4'b0011 = 3

sign extend

5'b10001 = 1

discard overflow

Figure 1: Basic Signed Addition Example

To do this addition using Verilog-1995 constructs we

could use the code in Code Example 1.

module add_signed_1995 (
 input [2:0] A,
 input [2:0] B,
 output [3:0] Sum
);

 assign Sum = {A[2],A} + {B[2],B};
endmodule // add_signed_1995

Code Example 1: Addition - Verilog 1995

Or we can use the new signed type and get the code in

Code Example 2.

module add_signed_2001 (
 input signed [2:0] A,
 input signed [2:0] B,
 output signed [3:0] Sum
);

 assign Sum = A + B;
endmodule // add_signed_2001

Code Example 2: Addition - Verilog 2001

Both adders are exactly the same size. So you will get

the same results without having to worry about manually

doing the sign extension.

Problems creep up when mixing signed and unsigned.

Consider adding two 3-bit values with a 1-bit carry in. See

Code Example 3 for a valid solution using Verilog 1995

module add_carry_signed_1995 (
 input [2:0] A,
 input [2:0] B,
 input carry_in,
 output [3:0] Sum
);

 assign Sum = {A[2],A} + {B[2],B} + carry_in;
endmodule // add_carry_signed_1995

Code Example 3: Add with Carry - Verilog 1995

Intuitively we would create Code Example 4 to use

signed types. However, when synthesized the following

warning occurs: signed to unsigned conversion occurs.

(VER-318) In addition there is a functional error. Due to

the carry_in being unsigned the operation is unsigned and

neither the A nor B operand is sign extended properly as in

Figure 1.

module add_carry_signed_2001 (
 input signed [2:0] A,
 input signed [2:0] B,
 input carry_in,
 output signed [3:0] Sum
);

 assign Sum = A + B + carry_in;
endmodule // add_carry_signed_2001

Code Example 4: Addition with Carry – Incorrect

We can avoid the synthesis warning by using assign Sum =

A + B + $signed(carry_in). But this creates a different

functional error. What happens if carry_in = 1? In this case

the $signed operator sign extends the carry_in so it now

equals 4’b1111 and we would have been subtracting 1

instead of adding 1. A similar functional error occurs if we

use Code Example 4 but declare carry_in to be a signed

input. See Code Example 5 for a valid solution. Using this

code we avoid the synthesis warning and sign extend

carry_in correctly with 0’s.

module add_carry_signed_final (
 input signed [2:0] A,
 input signed [2:0] B,
 input carry_in,
 output signed [3:0] Sum
);

 assign Sum = A + B + $signed({1'b0,carry_in});
endmodule // add_carry_signed_final

Code Example 5: Add with Carry - Correct

The code in Code Example 1 and Code Example 2

simulate the same with both RTL and gate level verilog.

They are also the same size. The code in Code Example 3

and Code Example 5 simulate the same using both RTL and

synthesized gate level verilog. They are also the same size.

Code Example 4 is smaller in area but functionally

incorrect.

 Signed Multiplication

Multiplying two values that are n-bits wide will

produce a 2n bit wide result. For example, multiplying -3

(3’b101) by 2 (3’b010) should result in -6 (6’b111010).

The multiplier (second factor) is examined bit by bit right to

left (least significant to most significant bit) to determine if

the multiplicand (first factor) is to be added to the partial

result. If so, the multiplicand is aligned so that the least

significant bit is under the correct multiplier bit position. If

the multiplicand is negative it must be sign extended.

However, if the MSB of the multiplier is 1, the multiplicand

is actually subtracted. Recall that subtraction is the same as

invert and increment. See the example in Figure 2.

 3'b101 = -3
x 3'b010 = 2

sign extend

6'b111010 = -6

000000
111010
000000

 3'b010 = 2
x 3'b101 = -3

000010
000000
111000

6'b111010 = -6

Invert 2, add 1,
sign extend

multiplicand

multiplier

 Figure 2: Signed Multiply Examples

Using Verilog-1995 constructs the code required to

multiply two 3-bit signed values is in Code Example 6.

module mult_signed_1995 (
 input [2:0] a,
 input [2:0] b,
 output [5:0] prod
);

 wire [5:0] prod_intermediate0;
 wire [5:0] prod_intermediate1;
 wire [5:0] prod_intermediate2;
 wire [2:0] inv_add1;
 assign prod_intermediate0 = b[0] ? {{3{a[2]}}, a} : 6'b0;
 assign prod_intermediate1 = b[1] ? {{2{a[2]}}, a, 1'b0} : 6'b0;
 // Do the invert and add1 of a.
 assign inv_add1 = ~a + 1'b1;
 assign prod_intermediate2 = b[2] ? {{1{inv_add1[2]}},
 inv_add1, 2'b0} : 6'b0;
 assign prod = prod_intermediate0 + prod_intermediate1 +
 prod_intermediate2;
endmodule

Code Example 6: Signed Multiply - Verilog 1995

Or we can use the new signed type and write the code in

Code Example 7.

module mult_signed_2001 (
 input signed [2:0] a,
 input signed [2:0] b,
 output signed [5:0] prod
);

 assign prod = a*b;
endmodule

Code Example 7: Signed Multiply - Verilog 2001

Now, lets multiply a signed value by an unsigned value.

Using Verilog 1995 constructs the code in Code Example 8

results. Now if we multiply –3 (3’b101) by 2 (3’b010) as

usual with Code Example 8 we get –6 (6’b111010). When

using a multiplier with one operand unsigned be sure of the

range of input to the unsigned operand. If we tried to

multiply 2 (3’b010) by –3 (3’b101) we would get 0xA

because –3 is actually 5 unsigned. Note that because the

multiplicand is unsigned this code is more compact and

results in a smaller size multiplier.

 module mult_signed_unsigned_1995 (
 input [2:0] a,
 input [2:0] b,
 output [5:0] prod
);

 wire [5:0] prod_intermediate0;
 wire [5:0] prod_intermediate1;
 wire [5:0] prod_intermediate2;
 assign prod_intermediate0 = b[0] ? {{3{a[2]}}, a} : 6'b0;
 assign prod_intermediate1 = b[1] ? {{2{a[2]}}, a, 1'b0} : 6'b0;
 assign prod_intermediate2 = b[2] ? {{1{a[2]}}, a, 2'b0} : 6'b0;
 assign prod = prod_intermediate0 + prod_intermediate1 +
 prod_intermediate2;
endmodule

Code Example 8: Signed by Unsigned Multiply - Verilog

1995

After migrating to Verilog 2001 we might be tempted

to use Code Example 9. However, recall the rule that if any

operand of an operation is unsigned the entire operation is

unsigned. When synthesized the following warning occurs:

signed to unsigned conversion occurs. (VER-318). Now if

we multiply –3 (3’b101) by 2 (3’b010) as usual with this

code we get 0xA (6’b001010). The reason for this is that

since we mixed signed with unsigned we actually multiplied

5 by 2 and got 0xA since the operation is considered

unsigned.

module mult_signed_unsigned_2001 (
 input signed [2:0] a,
 input [2:0] b,
 output signed [5:0] prod
);

 assign prod = a*b;
endmodule

Code Example 9: Signed by Unsigned Multiply -

Incorrect

How about trying Code Example 10? This works for

multiplying -2x3=-6 but what about if the MSB of our

unsigned number = 1? In this case the multiplier is sign

extended which is also incorrect. For the operation -2x7 we

would get actually get 2 while the correct answer is 0x-E

(6’b110010).

module mult_signed_unsigned_2001 (
 input signed [2:0] a,
 input [2:0] b,
 output signed [5:0] prod
);

 assign prod = a*$signed(b);
endmodule

Code Example 10: Signed by Unsigned Multiply - Still

Incorrect

The correct answer to this problem follows from Code

Example 5. Using this code we avoid the synthesis warning

and sign extend b correctly with 0’s. The correct code is in

Code Example 11.

module mult_signed_unsigned_2001 (
 input signed [2:0] a,
 input [2:0] b,
 output signed [5:0] prod
);

 assign prod = a*$signed({1'b0,b});
endmodule

Code Example 11: Signed by Unsigned Multiply -

Correct

Code Example 7 synthesizes to about 18% smaller than

Code Example 6. I believe that this is because synthesis

found a better implementation. There is no reason why we

cannot replicate this size by more careful hand coding. The

RTL and gate level implementation simulate the same.

Code Example 11 synthesizes to about 6% smaller than

the code in Code Example 8. Once again, I believe that this

is because synthesis found a better implementation. There is

no reason why we cannot replicate this size by more careful

hand coding. The RTL and gate level implementation

simulate the same. The code in Code Example 9 and Code

Example 10 are smaller in area but are functionally

incorrect.

 What is an expression?

The Verilog-2001 LRM states that to evaluate an

expression “Coerce the type of each operand of the

expression (excepting those which are self-determined) to

the type of the expression”[2]. The question is what is an

expression? Consider Code Example 12 which is directly

from a Synopsys’s SolvNet article 002590[3]. There are

two ways to look at this code. It could be considered as two

expressions, a signed multiply and then an unsigned

addition. It can also be considered as one expression, an

unsigned multiply followed by an unsigned addition.

Results will differ in each case.

module mult_add (
input signed [3:0] in1, in2,
 input [3:0] in3,
 output [7:0] o1;

);
assign o1 = in1 * in2 + in3;
endmodule

Code Example 12: Multiply and Add

It was reported that older versions of Design Compiler

considered this code as two expressions while some

simulators at the time considered it as one. Newer version

of Design Compiler and ModelSim consider this code as

one expression, alleviating a very worrisome

simulation/synthesis mismatch. This issue is slated to be

clarified in the upcoming Verilog 2005 LRM.

Rules for Expression Types

 Located in the Verilog 2001 LRM but worth repeating

here are the rules for determining the resulting type of an

expression. The following operations are unsigned

regardless of the operands.

1. Bit-select results

2. Part-select results, even if the entire vector is

selected.

3. Concatenation results

4. Comparison results

 Signed Shifting

Shifting of signed values creates another problem for

Verilog 1995. Consider a signed negative value that is right

shifted. The positions vacated by the right shift will be

filled in with zeros which is incorrect. Instead, the sign bit

should be used for vacated bits. A new operator >>> is

introduced in Verilog 2001 to accomplish exactly this. A

signed left shift operator (<<<) is also provided for

language consistency[1].

 Signed Saturation

In this section we present a concept that is widely used

in DSP math but is not easily accomplished in Verilog.

While sign extension is used when assigning a smaller bit-

width variable to a larger bit-width variable, the opposite is

accomplished using saturation. The possible outcomes of

saturation are max positive indicating positive overflow,

max negative indicating negative underflow, and simply

dropping the appropriate number of bits starting at the

MSB.

Saturation is accomplished by examining the number of

bits to saturate plus 1 starting at the MSB. If all of these

bits are the same drop the number of bits to saturate. If

these bits are different examine the MSB. If the MSB is 0

go to max positive, else go to max negative. A module sat

to accomplish this is in Code Example 13. Usage of this

module is in Code Example 14.

module sat (sat_in, sat_out);

parameter IN_SIZE = 21; // Default is to saturate 22 bits to 21 bits
parameter OUT_SIZE = 20;
input [IN_SIZE:0] sat_in;
output reg [OUT_SIZE:0] sat_out;

wire [OUT_SIZE:0] max_pos = {1'b0,{OUT_SIZE{1'b1}}};
wire [OUT_SIZE:0] max_neg = {1'b1,{OUT_SIZE{1'b0}}};

always @* begin
 // Are the bits to be saturated + 1 the same?
 if ((sat_in[IN_SIZE:OUT_SIZE]=={IN_SIZE-OUT_SIZE+1{1'b0}}) ||
 (sat_in[IN_SIZE:OUT_SIZE]=={IN_SIZE-OUT_SIZE+1{1'b1}}))
 sat_out = sat_in[OUT_SIZE:0];
 else if (sat_in[IN_SIZE]) // neg underflow. go to max neg

sat_out = max_neg;
 else // pos overflow, go to max pos

sat_out = max_pos;
 end
endmodule

Code Example 13: Saturation Module

wire signed [4:0] A, B, C;
reg signed [2:0] D, E, F;

A = 5'sb11101;
B = 5'sb01001;
C = 5'sb10001;

// Drop two MSB’s. D will equal 3'sb101
sat #(.IN_SIZE(4), .OUT_SIZE(2)) satA (.sat_in(A), .sat_out(D));

// Go to max positive . E will equal 3'sb011
sat #(.IN_SIZE(4), .OUT_SIZE(2)) satB
 (.sat_in(B), .sat_out(E));

// Go to max negative. F will equal 3'sb100
sat #(.IN_SIZE(4), .OUT_SIZE(2)) satC
 (.sat_in(C), .sat_out(F));

Code Example 14: Use of Saturation Module

 Summary

This paper strove to give the user a strong background

on the use of signed types using the Verilog 2001 language.

The proper use of type casting, addition, multiplication,

shifting, and truncation was presented. In addition, an

example of a signed saturation module along with examples

of it’s use were included.

Proper use of the new signed capability in Verilog 2001

can be summarized by a few basic rules.

1. If any operand in an operation is unsigned the

entire operation is unsigned[2].

2. Investigate fully all signed to unsigned conversion

occurs. (VER-318) synthesis warnings. These

point to incorrect functionality

3. All signed operands will be signed extended to

match the size of the largest signed operand.

4. Type casting using $unsigned will make the

operation unsigned. The operand will be sign

extended with 0’s if necessary.

5. Type casting using $signed make the operand

signed. The operand will be sign extended with

1’s if necessary. Pad the operand with a single 0

before the cast if this is not desired.

6. Expression type depends only on the operands or

operation, it does not depend of the LHS of the

expression.

References

1. S. Sutherland. Verilog 2001 A Guide to the New

Features of the Verilog Hardware Description Language.

Kluwer Academic Publishers

2. IEEE P1364-2005/D3. Draft Standard for Verilog
®

Hardware Description Language.

3. Synopsys Inc, Synopsys Solvnet, solvnet.synopsys.com

