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Abstract 
Circuit partitioning is a very extensively studied problem. Our proposed methodology easily 
extends to multiple constraints that are very dominant in the design of large scale VLSI Systems. 
In this paper we formulate the problem as a nonlinear program (NLP). The NLP is solved 
for the objective of minimum cutset size under the constraints of pins, area, and timing. We 
have tested the unified framework for area, timing, and pin constraints. The NLP is solved 
using the commercial LP/NLP solver MINOS. We have done extensive testing using large scale 
RT level benchmarks and have shown that our methods can be used for exploring the design 
space for obtaining constraint satisfying system designs. We also provide extensions for solving 
system design problems where a choice between multiple technologies, packaging components, 
performance, cost, yield, and more can be the constraints for design related decisions. 

1 Introduction 
Ever changing complexity of VLSI systems requires support from CAE tools for automated 
decision making capability. Also, important design related decisions should be made early in 
the design process. This requires tools that have the capability to explore design choices, make 
tradeoffs between various constraints, and selectlreject design options so as to obtain a very 
high quality constraint satisfying solution. Motivated with this task of automating the system 
design process we have conducted this research for system level partitioning problems. 

In system level partitioning, a designer is presented with an application (design), a set of 
requirements, a set of options for realizing the design, and a set of constraints for implementing 
or physically realizing the overall design. In a typical design such parameters would include 
choice of packaging options, i.e., ICs from various technologies, their area and pin constraints, 
their costs, timing requirements on the overall design, yield, testability, and more. In the pres- 
ence of such choices the designer must try to optimize the resources such that the final design 
implementation satisfies as many constraints as possible. 

In this paper, we have modeled the problem of partitioning in the presence of multiple 
constraints as a non-linear programming problem (NLP) and have presented effective solutions 
for partitioning designs in the presence of area, timing, and pin constraints. 

In[5] we perform bipartitioning under timing and area constraints only. We extend this work 
to k-way partitioning and now include pin constraints. We generate k vs P relationships for each 
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benchmark under pin and area constraints only, where k is the number of partitions and P is the 
pins per package. Then at each k vs P data point we introduce timing constraints to find the 
minimum critical path delay under the same pin and area constraints. 

2 k-way Partitioning Under Timing, Pin, and Area Constraints 
Given a set of n netlist modules V = {u0 ,  w2,. . . , ZJ"-~} and m distinct pairs of vertices called 
edges E = {el, e2,. . . ,em}, wc may represent the circuit as a graph G = (V, E ) .  The cardi- 
nality of every edge is 2, i.e. le] = 2. A vertex vZ, x = 0, .  . . , n - 1 is adjacent to a vertex 
wy, y = 0 , .  . , , n - 1 if (vz1 uY) is an edge, i.e., (zJ,,zJ~) E E. A graph G' = (V', E') is a 
subgraph of graph G if and only if V' c V and E' c E. 

We may also represent the circuit as a hypergraph G = (V, E'') with n vertices and a set 
E'' C 2" of hyperedges or nets. Unlike the graph representation, the cardinality of every 
hyperedge is greater than or equal to 2. The vertices in a hyperedge are called the terminals 
of the hyperedge. The hypergraph will more directly model an actual circuit. Figure 1 shows a 
hypergraph and it's representation as a graph[3]. 

Given a set of n netlist modules the goal of k-way partitioning is to assign each ZJ,, i = 
0 , .  . . , n - 1, to a specified number k of segments. If k = 2, the problem becomes that of 
graph bipartitioning. An edge e is cut if both terminals of e are not within a single segment. 
The total number of cut edges under a graph model is called the size of cutset. Typically one 
chooses to minimize the size of cutset according to some pre-defined criteria. In this paper we 
represent a circuit as a graph. We then perform k-way graph partitioning under timing, pin, and 
area constraints. The size of cutset is evaluated for the equivalent hypergraph representation 
in the circuit. It is known that minimizing the graph cutset of a circuit will also minimize the 
hypergraph cutset. For Figure 1, if terminals 1 and 2 are in one segment and terminals 3 and 4 
are in another the cutset is two for the hypergraph and three for the graph. 

The input to the partitioner is a netlist and the area of each netlist component. We represent 
each net as a clique of size equal to the number of terminals in the net and then optimize the 
graph cutset size over all nets according to capacity, i.e., area constraints while varying the 
pin constraints. For a specific pin constraint we attempt to obtain a satisfying partition with 

minimal k ,  that is k = ['';I0 1, where aJ is the area of cell 3 and A is the area constraint. If 
a satisfying partition is not produced we increment k until a feasible partition is found. In this 
way we find the minimum IC required for a wide range of P ,  the pins per package. This will 
produce a k vs P relation for each benchmark. We then incorporate k . T timing constraints 
which are derived from the T critical timing paths. The minimum critical path delay is found at 
each k vs P data point for each benchmark by attempting to cut none of the critical paths. The 
allowed cuts per critical path increases by one until a feasible partition is found. In this way we 
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Figure 1: Hypergraphs and Graphs 
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find the minimum delay for each k vs P data point. 
The CO problem is solved as an assignment problem. We associate a variable xi, 0 5 i 5 

n . k - 1 for n components and k segments. For example, if n = 2 and k = 3 then 20 = 1 if 
component 0 is on segment 1 , O  otherwise, x1 = 1 if component 1 is on segment 1 ,0  otherwise, 
x2 = 1 if component 1 is assigned to segment 2 , O  otherwise,. . .,x5 = 1 if component 1 is on 
segment 3, 0 otherwise. In general, for k segments, if xi = 1 then cell i . mod n is assigned 
to segment 1; + 11. Each cell has k assignment variables. A solution to the NLP problem 
can result in non-integer assignment to xi which will not form a feasible partitioning solution. 
Thus, fractional assignment variables have to be rounded for generating a feasible partitioning 
solution. We employ 0-1 rounding for changing the fractional assignments to an integer form. 
This can be done simply by choosing a value, median, and if xi 2 median set x, to 1, 0 
otherwise. However, it is possible that in some cases all k of cell j’s assignment variables are 
less than median, i.e. xj+n,(c-l) < median, c = 1 , 2 , .  . . , k. If this is the case randomized 
rounding is employed. Given a fractional assignment variable, x, = p ,  randomized rounding 
will round this variable to 1 with a probability p .  Only one of cell j’s k assignment variables 
can be assigned a value of 1 to obtain a feasible partition. 

2.1 Partitioning under Pin and Area Constraints 
Consider a three cell net, 0, 1, and 2, to be partitioned into three segments, i.e. k = 3. Let 
xo = 1 if component 0 is on segment 1 , 0  otherwise, x1 == 1 if component 1 is on segment 1, 
0 otherwise, x2 = 1 if component 2 is on segment 1,0 otherwise, x3 = 1 if component 0 is on 
segment 2,O otherwise,. . ., 28 = 1 if component 2 is on segment 3 ,O otherwise. The cutset of 
this net will be: 

k-1  k 
xi+n.(c-l)Zj+n.(d-l) (2)  

VrEM c=l d=c+l Vi€Q7 V j€QT# i  

where Qp is the set of all non I/O elements on net T and M is the set of all nets. 
As with any partitioning problem formulation, minimizing the cutset size is the most im- 

portant objective for our formulation. A typical VLSI circuit contains majority of nets that are 
small, i.e., two to four terminals. Hence, in our implemenhtion, for very large nets, we drop out 
the terms in the above mentioned expression. Large nets require many terms to model correctly, 
wasting time and memory. However, we always account for an extra (possible) cut in our cutset 
size evaluation process. 

2.1.1 Pin Constraints 
In addition to minimizing the cutset, we also consider the pin constraints. Any net must contain 
all YO elements, a mixture of YO elements and cells, OR contain all cells. Obviodsly, a net 
containing all YO elements imposes no additional pins while if it contains a mixture of U 0  
elements and cells will require a pin on whatever segment a cell is assigned to. A net containing 
all cells requires a pin on whatever segment a cell on the net is assigned to only if the net is cut. 
A net can require zero or one pin on a chip. A net as related to pins can only be cut once and 
must be modeled exactly in this case. 
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First we will derive the pin constraint for a net with all cells. Given a net with two cells, 
1 and 2, let x1 = 1 if cell 1 is on chip 1, 0 otherwise, and z2 = 1 if cell 2 is on chip 1, 
0 otherwise. The exact logical expression for the number of pins required on chip 1 for this 
net is q x 2  + Z x l .  Using DeMorgans theorem this expression becomes -. a. Since 
x1 E (0, l} and x2 E ( 0 , l )  this equation is numerically equal to zl + x2 - 2x1x2. 

If we add a third cell, 3, with assignment variable x3 = 1 if cell 3 is assigned to cell 1, 
0 otherwise, the logical expression for the pins required on chip 1 is . S.  a and is 
numerically equal to x1 +x2 + 2 3  -x1x2 - 21x3 -22x3, In general the number of pins required 
on a chip for nets consisting of cells only is 

VTES i= l  j=1 

where S is the set of all nets without any I/O cells, M, is the set of cells on net r ,  M,, is the 
set of assignment variables of cells on net r such that xj+c(n-l) E M,, and j E M,., C y "  is the 
combinations of the set M,, taken i at a time, and F equals 1 if 1 M, I is even, 0 otherwise. 

Next, we will derive an expression for a net with a mixture of I/O elements and cells. Con- 
sider the 2 cell net described above with the addition of an I/O element. The exact logical 
expression for the number of pins required on chip 1 is XI + 22. Using DeMorgans theorem this 
expression becomes m. Numerically, this expression is equal to z1 + x2 - x1x2. 

If we add a third cell onto this net, as described above, the exact logical expression for 
the pins required on this'net is 212253. Numerically, this expression is equal to x1 + x2 + 
2 3  - xlx2 - 21x3 - 22x3 + xlx2z3. In general, the number of pins required on a chip for nets 
containing a mixture of U 0  elements andeells is 

IQrI c c(-l)i+lc?c c = 1,. . . , k (4) 
VrED a = l  

where D is the set of all nets containing a mixture of U0 elements and cells, Q, is the set of 
non U 0  elements on net r ,  Q,, is the set of assignment variables of cells on net r such that 
xj+c(n-l) E Q,, and j E Qp. and C?"' is the combinations of the set Q,, taken i at a time. The 
pin constraints are expressed for all k chips from equations 3 and 4. 

2.1.2 Area Constraints 
Let aj,  j = 0, . . . , R - 1 be the area of cell j. For k-way partitioning the k area constraints will 
be 

( 5 )  
n-1 

ajxj+n(c-l) 5 A, c = 1,. . . , k .  
j=O 

where A, is the area of package c. 

2.1.3 Assignment Constraints 
We ensure that each component is only assigned to one partition thru n assignment constraints. 
The general form of these constraints &e 

k 

~ j + ~ ( , - 1 )  = 1 j = 0,. . . , n - I 
c=l 
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2.2 Incorporating Timing Constraints 
In addition to minimizing the cutset subject to pin and area constraints as described above, we 
now consider the timing constraints. In order to formulate timing constraints, we consider a set 
of critical paths. In practice such a constraint can be user defined. However, for our solution, 
we evaluate the first T longest paths in the given circuit. The T longest paths are found using 
Kundu's longest path algorithm [2]. This algorithm performs a levelized forward traversal of 
nodes with a merge sort of delay values, followed by a backward trace to identify T longest 
paths. All output cells are connected to a pseudonode for this purpose. The delay values on 
each edge is dependent on three factors: fanout from the source cell, delay of the source cell, 
and type of the source and destination cell. The source and destination cell can be an input, 
output, or intemal cell. 

Table 1 illustrates the determination of delay values where delayj is the delay of intemal or 
YO cell j ,  o3 is the fanout to output cells, i, is the fanout tal intemal cells, ,D is the delay due to 
driving an output cell, p is the delay due to driving an internal cell, and C is the timing penalty 
for an edge leaving the chip. 

Table 1: Delay Values 

n o u r c e  I Sink I Edge Delav n 

Intemal I Internal I delayj + 
Intemal 1 Output I 

As can be seen from this table, the only variable in the critical path delay is the cutset 
of internal edges on the T critical paths. Let z~~~~~~ and .z,ink be the assignment of intemal 
source and sink cells. The timing penalty for an edge between the souyce and sink being cut is 
2C(zsozlrce + xsink - 2 2 , , , , , , ~ , ~ ~ ~ ) .  In general, the T'th timing constraint for all k partitions is 

DT + 2C(~i+,(~-q + ~ ( i + l ) + ~ ( ~ - l )  - 2~i+~(~-l)x(i+l)+,(,-l)) 5 TimeT c = 1,. . . , k 

(7) 
where DT is the delay on critical path T if no edges are cut, ET is the ordered set of edges 
traversed containing non I/O cells on critical path T and TimeT is the maximum delay allowed 
on critical path T.  Obviously, if DT + 2C > TimeT no edge on critical path T can be cut. We 
constrain T critical paths on each of the k chips for k . T tirning constraints. 

3 Experimental Results 
All code is written in C++ and fortran and compiled using g++ and f77, respectively. MINOS 
is written in fortran. All benchmarks were tested on an UltraSparc with 512 MB of RAM. 

We partition six RT level benchmarks generated from behavioral VHDL descriptions using 
the high level synthesis system DSS[4]. These benchmarks represent the structure of six large 
circuits whose characteristics are detailed in[l]. We considsr the ten most critical paths for all 
benchmarks. The characteristics of these benchmarks are in Tablt2i The last column of Table 2 
shows the area constraint used for each benchmark which is '' . 1.05 which results in a 
minimum k of :2. 

C 
v( i , j )EE~ 
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Bench Total 
Mark Area 

Tables 3 - 8 show the results of partitioning under pin and area constraints only. Tables 9 
- 14 show the results of considering timing constraints at each k vs P data point in Tables 3 - 8. 
In Tables 9 and 14 there are three runs that did not complete and contain dashes in the results 
columns. 

The columns headings in Table 2 - 14 are: 

0 Benchmark - The name of the benchmark circuit 

0 Total Area - Combined area of cells in the benchmark in square microns 

0 Number Cells - Total number of cells in the benchmark 

0 Number Nets - Total number of nets in the benchmark 

0 Area Const. - Area constraint considered by MINOS 

0 Pin Const. - Pin constraint considered by MINOS 

0 k Run - Number of partitions considered by MINOS 

0 k Actual - Number of partitions actually required (May be different than k Run) 

0 Run Time - User + system CPU time in seconds required by MINOS to solve the problem. 

0 Cutsize - Cutset size of the hypergraph representation after rounding 

0 Cut Run - Number of cuts allowed on each critical path 

0 Cuts on Critical Path . . . - Cuts on each of 10 critical paths 

Number Number Area 
Cells Nets Const 

I I I I 1 TLC I 2206942 I 33 I 93 I 1158645 n 

3.1 Analysis 
Table 15 illustrates the average impact of incorporating timing constraints on the cutset size and 
runtime of each benchmark over all runs. Column 2 is the average percent increase in the run 
time from the tests only considering area and pins. Column 3 is the average percent increase in 
the cutset size(cutsize) from the tests only considering area and pins. Columns four thru thirteen 
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E 5 1 5 129.2 I 2 6  1 2 1 2 1 2 1 2 1 2 ] 2 ( 3 1 3 1 3 1  3 
17 8 98 1 4 1  ; 2 ; 2 ; 2 1 2 1 2 1 2 1 3 1 3 1 3 ;  3 I 

Table 4: k vs P Results for decompress 

give the average percent decrease in the cuts on each critical path from the tests not considering 
timing. 

The average run time penalty ranges from a high of 234% to a low of 16% and an average 
of 75% while the average cutsize penalty ranged from a high of 35% to a decrease in the 
cutsize of 13% and an average of 13%. Intuitively, one would not expect that the consideration 
of IC . T extra constraints would cause the cutsize to decrease. When dealing with non-linear 
optimization functions and constraints it is quite possible for the NLP tool to stop in a local 
minimum. Different constraints and optimization functions produce different search directions 
and therefore different local minima. 

The average decrease in the cuts on the ten critical paths ranged from a low of 0 to a high of 
75% and on average the number of cuts on a critical path was reduced by 38%. Recall that the 
number of cuts on each critical path was constrained by a minimum pin constraint previously 

Table 5: k vs P Results for compress 
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Table 6: k vs P Results for find 

Table 7: k vs P Results for fifo 

found. It is expected that for a given I C ,  and a relaxed pin constraint a partition solution with 
lower delay would be found. 

4 Concluding Remarks 
In this paper we have presented a methodology that can be used for effective partitioning of 
circuits by taking multiple constraints into account. In general, partitioning with multiple con- 
straints is solved by lumping cost parameters such as area, timing, power, and more into one 
multi-variable function. This has a tendency of not producing designs that can meet the required 
constraints. We have presented test results for a variety of large real circuits when taking area, 
pin, and timing costs into consideration. In general we have observed that our methods are 
fairly compute intensive and partitioning at gate level networks is not a preferred recommenda- 
tion. However, partitioning using our techniques at RT level of design may be very effective as 
the size of a circuit’s netlist is fairly small. Also, early design decisions in the higher levels of 
design abstraction are always preferred. Another effective method would be to form clusters on 
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Table 8: k vs P Results for viper 
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Table 10: Results for Decompress with Timing 

Const. Run Actual I Time 1 Size I Run 11121 9 
E 

Table 11: Results for Compress with Timing 

25 I 5 I 4 I 15.21 20 I 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 I] 

Table 12: Results for Find with Timing 
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Table 13: Results for Fifo with Timing 

Table 14: Results for Viper with Timing 
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Table 15: Impact on Run Time and Cutsize when Considering Timing 

Bench I %Increase I %Increase I % Decrease Cuts on Critical Path . . . 

a gate level design. The clusters can then be considered as supernodes and an NLP formulation 
would solve fairly quickly. 

Our on going work includes addressing the problem of hierarchical partitioning (when mul- 
tiple constraints like area, pin, cost, timing are very important for designing VLSI Systems), and 
exploring methods for guiding NLP solver to obtain better constraint satisfying local minimas, 
perhaps close to global minimas. 
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