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ABSTRACT 

Circuit partitioning is a very extensively studied problem. 
Traditional heuristic methods used to solve these problems 
degrade in performance when the problem size becomes 
large. Clustering has been proposed as a method to re- 
duce the problem size, allowing the problem to be solved 
faster and with more accuracy. In [7] we propose a novel bi- 
partitioning method based on a mathematical formulation of 
the problem which can be solved using commercial combi- 
natorial optimization (CO) tools. In this paper we continue 
to formulate the problem as a nonlinear program (NLP) but 
also apply clustering to determine if run-time and quality 
can be improved. 

1. INTRODUCTION 

Given a set of n netlist modules V = { U O ,  w 1 ,  . . . , wn-l} 
and m pairs of distinct vertices called edges E={el,e2,. . ., 
e,} we may represent the circuit as a graph G = (V, E ) .  A 
vertex U,, x = 0, .  . . , n - 1 is adjacent to a vertex wy, y = 
0,.  . . ,n - 1 if (21%) wY) is an edge, i.e., (w,, wY) E E. The 
goal of hi-partitioning is to assign each vi, i = 0,. . . , n - 1, 
to one of two segments such that the capacity of neither seg- 
ment is violated and the cutset is minimized. An edge e is 
cut if all the terminals of e are not within a single segment. 
The total number of cut edges is called the size of cutset. 

Clustering will produce a set of k disjoint, nonempty 
clusters Cl, C2,. . . , Ck such that C1 U C, U . .  . U Ck = V .  
This reduces the problem instance to size k instead of n. 
The clustering process will also decrease the sparsity of the 
netlist. It is believed that the FM and KL partitioning al- 
gorithms will perform better on netlists of higher density 
and smaller solution space[2][4]. In this way, the order- 
ing of modules (nodes) based on clustering creates a natural 
bias towards the search for a better solution. As problem 
instances grow, clustering will be an integral component 
of any partitioning algorithm, particularly move based ap- 
proaches. We use a clustering algorithm called CL[3] that 
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uses the geometric embedding of a graph G to find a good 
clustering. 

One method to integrate clustering into a partitioning 
algorithm is via the so called two-phase method. In this 
method, the partitioning algorithm is executed on the con- 
tracted netlist(phase 1) and the solution is the starting point 
for the second execution on the original (flat) netlist(phase 
2). This is the method we will use to integrate CL into our 
partitioning algorithm. 

In this paper we will examine the effects of clustering 
to improve on the quality of a bi-partition. Using the FM 
method we will perform hi-partitioning on flat gate level 
benchmarks. We then perform two-phase bi-partitioning us- 
ing the FM method and a new bi-partitioning model and 
compare the results. 

1.1. Combinatorial Optimization 

Generally a combinatorial optimization (CO) problem is an 
optimization problem of the form 

minimize  f(x) 
subject to  gi(x) 5 0 i = 1,. . . , m. (1) 

The function f(x) is the objective function and the set of 
conditions si(.) 5 0, i = 1, . . . , m, are the constraints of 
the problem. Note that the number of constraints can be 
very large. Every vector x that satisfies the constraints is 
a solution to the problem. A solution that minimizes f(x) 
over the set of all solutions is an optimal solution. A vector 
x’ is a local optimum if and only if there exists a neighbor- 
hood V(x’ )  of x’ such that x’ is a global optimum of the 
problem. 

The forms that f(x) and gi(x) take determine the type 
of CO problem. If f(z) is linear, the problem is a linear 
program(LP), while if f(z) is non-linear, the problem is a 
non-linear program(NLP). f(x) may have both linear and 
non-linear elements. The constraints si(.) can also be lin- 
ear, non-linear, or a combination of both. A special case 
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of non-linear CO is when the terms of f ( x )  are quadratic 
and the constraints are linear. This is called a quadratic 
program(QP). If f ( x )  does not exist and only constraints 
are present the problem becomes a constraint satisjiability 
problem (CSP). Equations 2 and 3 show the forms of linear 
and quadratic programs respectively. 

minimize  cTx subject t o  A x  5 b (2) 
1 
- x T D x  + cTx subject t o  A x  5 b ( 3 )  
2 

In equations 2 and 3, cT is the transpose of the coeffi- 
cients of the linear optimization function, x is the solution 
variables, A is the constraint matrix of the linear constraints, 
b is the right hand side of the linear constrains, D is the co- 
efficient matrix of the quadratic optimization function, and 
xT is the transpose of x .  

Many fast methods exist to solve a LP[5] as do methods 
to solve a NLP if it is convex, that is, every local optimum is 
also a global optimum. However, there are no known meth- 
ods to find a global optimum for a non-convex NLP prob- 
lem. Only a local optimum is guaranteed to be found in this 
case. The graph bi-partitioning problem when formulated 
as a CO problem is non-convex. 

We solve our problem with the commercial LP/NLP solver 
MINOS 5.4. MINOS can solve large scale linear and non- 
linear programs and takes advantage of sparsity of matrices[6]. 

minimize  

2. CLUSTERING TO IMPROVE BI-PARTITIONING 
QUALITY 

The two-phase bi-partitioning method seeks to increase par- 
tition quality on large circuits by clustering the circuit and 
then bi-partitioning the clustered circuit. The results of the 
bi-partition are used as a starting point for bi-partitioning 
the j u t  circuit. 

Phase 1 of two-phase bi-partitioning will perform bi- 
partitioning on the clustered netlist. For each benchmark, 
the C L  clustering algorithm creates 10 distinct clustered 
netlists, corresponding to 10 embedding dimensions. For 
each embedding dimension d, 1 5 d 5 10, a bi-partition of 
the flattened netlist is found by expanding the bi-partitioned 
clusters. This bi-partition is used in phase 2 as the initial 
bi-partition. 

In phase 2, the flat netlist is bi-partitioned using the ini- 
tial bi-partition found in phase 1. For each embedding di- 
mension d, 1 5 d 5 10, a bi-partition of the flattened netlist 
is found, utilizing the corresponding initial bi-partition. 

The CO problem is solved as an assignment problem. 
We associate a variable xi, 0 5 i 5 n - 1 for n compo- 
nents. It is predetermined for bi-partitioning that if zi = 1 
then module i belongs to a partitioning segment and to the 
complimentary one if zi = 0. A solution to the NLP prob- 
lem can result in non-integer assignment to zi which will 

not form a feasible partitioning solution. Thus, fractional 
assignment variables have to be rounded for generating a 
feasible partitioning solution. We employ 0- 1 rounding for 
changing the fractional assignments to an integer form. This 
can be done simply by choosing a value, median, and if 
xi 2 median set xi to 1,0 otherwise. 

2.1. Problem and Solution 

Consider a three cell net, 0, 1, and 2, to be bi-partitioned 
and it's associated assignment variables xo,z1,  and 2 2 .  The 
graph cutset of this net will be: 

cutset = (20 + x1 - 2 ~ ~ x 1 )  + ( x o  + x z  - 2 x o x ~ ) + ( 4 )  
( 5 )  ( 2 1  + 2 2  - 221x2). 

In general the graph cutset is 

IQ--11 IQ-I 

where QT is the ordered set of all non WO elements on 
net T ,  such that Qrl  is the first element, QT2 is the second 
element,. . ., Q T l ~ P l  is the last element and M is the set of 
all nets. This will form f ( x )  in equation 1. 

Let ai, i = 0 , .  . . , n - 1, be the area of cell i. For bi- 
partitioning, the area constraint on segment 1 and 2 is 

n-I 

(7) 
i=O 
n--1 

, -  U '  

i=O 

where Al and A2 are the capacity constraints on two parti- 
tioning segments, 1 and 2 respectively. This will form g1 ( x )  
and gZ(x) in equation 1. Note that A1 and A2 are not nec- 
essarily the same. 

3. RESULTS AND ANALYSIS 

In this section we present results demonstrating the effects 
of clustering on bi-partition quality. To determine if cluster- 
ing provides any benefit we also perform bi-partitioning on 
the flat benchmarks using the FM method. We also show to 
what extent an initial starting point affects the bi-partitioning 
model solved by MINOS. The characteristics of these bench- 
marks' appear in Table 1. The clusters induced by the CL 
algorithm on each benchmark for each of 10 embedding di- 
mensions were provided by C. Alpert[ 11. 

We will use the FM method and the bi-partitioning model 
solved by MINOS to perform two-phase bi-partitioning. We 
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wish to separately test the effect that MINOS and FM ex- 
hibit in both phases of two-phase bi-partitioning. Also, we 
will test the sensitivity of MINOS to the initial partition. 
This is accomplished by running MINOS using the default 
initial starting point, i.e. all variables equal to 0. This cor- 
responds to all cells being initially assigned to 1 partition. 
Only one run of MINOS is required for each embedding 
dimension in this case. Therefore, there will be 6 different 
ways to apply FM and MINOS to two-phase bi-partitioning. 

For each embedding dimension, 20 runs of FM,20 runs 
of MINOS and 1 run of MINOS are used to create the bi- 
partitioned clusters for a total of 410 runs for each bench- 
mark. The random initial partition created by FM is used as 
a starting point for each of the 20 runs of MINOS. In phase 
2 the 410 initial partitions created in phase 1 are used as an 
initial starting point for bi-partitioning the flat netlist. Both 
FM and MINOS are used to bi-partition the flat netlists for 
a total of 820 runs. 

3.1. Analysis 

Table 2 compares the best cutsize of 50 runs of FM on an 
unclustered flat netlist to the best cutsize of two-phase bi- 
partitioning. Using the FM method or 20 runs of MINOS 
for phase 1 and then FM for bi-partitioning the flat netlist 
resulted in the most improvement over flat bi-partitioning. 
The average decrease in cutset is 8.6%. When only I run 
of MINOS was used for phase 1 and then FM was used to 
bi-partition the flat netlist the cutsize increased by 15%. We 
did not observe as large of an improvement as in [ 11 but we 
used different module sizes and a different area constraint. 
This resulted in better partitioning results than in [ 11 for 50 
runs of FM on a flat netlist. The other three combinations 
of methods for two-phase bi-partitioning produced inferior 
results. 

Table 3 compares the runtimes of 50 runs of FM on 
an unclustered flat netlist to the runtimes of two-phase bi- 
partitioning. Using the FM method or 1 run of MINOS 
for phase 1 and then FM for bi-partitioning the flat netlist 
resulted in the most improvement over flat bi-partitioning. 
The average decrease in runtime is 94% and 99% respec- 
tively. The other four combinations of methods for two- 
phase bi-partitioning, while faster than 50 runs of FM, were 
appreciably slower. Also, note that using 1 run of MINOS 
instead of the FM method in phase 1 and then the FM method 
in phase 2 resulted in an average decrease in runtime of 
74%. 

These results imply that clustering should always be uti- 
lized. Not only does clustering reduce the runtime but the 
cutsize is also improved. In all cases the FM method should 
be used for phase 2. However, if time is critical 1 run of MI- 
NOS should be used in phase 1, otherwise the FM method 
should be used to create the initial partition. 

4. SUMMARY 

In this paper we present a mathematical model for the graph 
bi-partitioning problem and demonstrate the effects cluster- 
ing has on run-times and cutsizes. To evaluate the merits of 
FM and MINOS in two-phase bi-partitioning we tested all 
possible combinations and compared the results to flat bi- 
partitioning using the FM method. This demonstrates the 
effects of clustering to improve not only the quality of bi- 
partitioning but also the runtimes. 
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Table 1 : Benchmark Characteristics 

Bench Number 
Mark Cells 

t2 1663 

Number Total Largest 
Nets Area Cell 
1720 261,285,092 64,025,484 

t3 
t4 
t5 
t6 

.I 
1607 1618 136,599,614 18,057,076 
1515 1658 172,532,995 67,954,944 
2595 2750 305,422,515 114,264,400 
1752 1641 123,505,052 1,351,394 

1 

-, P 1 833 902 27,982,000 180,000 
p2 3014 3029 52,324,000 180,000 

. 
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t6 13% 17% -11% -30% -13% -20% 
P l  0% 2% -31% -31% -20% -63% 
p2 16% 18% 12% -9% 11% 13% 

p l  
p2 

96% 71% 99% 84% 62% 88% 
93% -47% 98% -60% -1 14% 49% 


