

Chip-Level Verification of an RF ASIC with
CustomSim/VCS

Greg Tumbush, PhD, PE

EM Microelectronic-US, Inc

Colorado Springs, CO, USA

www.emmicroelectronic.com

ABSTRACT

Chip-level AMS verification requires a unique mix of digital methodology with analog expertise.
The methodology used at EM Microelectronic to verify our latest RF ASIC utilizes the Synopsys
VCS AMS tool combining the CustomSim analog solver with the VCS digital simulator for true
chip-level verification. Our methodology features a SystemVerilog testbench wrapping the
spice and AMS analog circuits. The chip-level tests are self-checking and executed from the
command line allowing the entire test suite to be run as a regression. The SystemVerilog
testbench probes currents and voltages directly using the $snps_get_volt and
$snps_get_port_current system tasks to ensure specification compliance. The measured
voltage/current is passed to a checker function with allowed ranges to account for variability
in the measurement and reports pass or fail. The expected passing count for each test is also
checked, ensuring that the test completed as expected. The simulations can be run as AMS or
digital only through TCL commands to debug the SystemVerilog transactors communicating
with the ASIC.

SNUG 2019

Page 2 Chip-Level verification of an RF ASIC with CustomSim/VCS

Table of Contents

1. Introduction ... 4

1.1 System Description ... 4

2. Methodology .. 5

3. Environment .. 6

3.1 Run script ... 7

3.2 Mixed-Signal simulation control file ... 7

3.2.1 Specify the bus format of vectors ... 7

3.2.2 Specify the analog solver and options .. 8

3.2.3 Specify the restore file ... 8

3.2.4 Specify the characteristics of the D2A and A2D converters .. 8

3.3 CustomSim Control File .. 10

3.3.1 Read a TCL script to specify the digital representation .. 10

3.3.2 Set the simulation accuracy .. 12

3.3.3 Save the state to restore ... 12

3.3.4 Specify currents and voltages to probe .. 12

3.4 Testbench ... 13

3.5 Replacing the PnP regulator ... 14

3.6 Supporting digital only tests .. 15

3.7 NVM stuffing .. 15

3.8 RF Verification .. 15

4. Results, debug, and improvements ... 15

4.1 Debug using the simv.msv directory ... 16

4.1.1 interface_element.rpt .. 16

4.1.2 names_map.rpt ... 16

4.1.3 port.rpt .. 16

4.2 What did not work well .. 16

4.2.1 Usage of snps_above() or snps_cross() slows the simulation ... 16

4.2.2 Confusing probe_waveform_* statements .. 17

4.3 Improvements .. 17

5. Conclusions ... 17

6. References ... 18

SNUG 2019

Page 3 Chip-Level verification of an RF ASIC with CustomSim/VCS

Table of Figures

Figure 1: Block Diagram of RF ASIC ... 5

Figure 2: Chip-Level Testbench ... 6

Figure 3: Scripting flow ... 7

Figure 4: Specifying the seed and command line to VCS ... 7

Figure 5: Digital output using defaults for D2A converter ... 8

Figure 6: Digital output specifying range for D2A coverter ... 9

Figure 7: Digital input using defaults for A2D converter .. 9

Figure 8: Addition to vcsAD.init for correct a2d operation .. 10

Figure 9: Digital input using correct specification for A2D converter .. 10

Figure 10: TCL CustomSim Control File ... 11

Figure 11: Simulation statistics from set_waveform_sim_stat .. 11

Figure 12: Testbench module declaration .. 13

Figure 13: Calling the selected test task ... 13

Figure 14: Functions to check a real voltage and real current ... 14

Figure 15: Sampling task for voltage above threshold .. 17

SNUG 2019

Page 4 Chip-Level verification of an RF ASIC with CustomSim/VCS

1. Introduction

This paper presents the chip-level verification of a mixed signal RF ASIC utilizing Synopsys
CustomSim/VCS. The work was completed at EM Microelectronic-US.

The ASICs that EM Microelectronic-US develops are typically very lower power with standby current
in the uA range and operating current in the 100’s of uA range. Low-power modes are used
extensively. Their ASICs are optimized for area and memory is to be kept to a minimum. The ASICs
are typically dominated by analog, and the design teams are small, 1 or 2 digital designers, 1 analog
designer and a similar number of verification engineers. Their design cycles are short, with concept
to tapeout in less than 12 months. Their ASICs must sell in a market that is typified by low cost and
high volume.

Chip-level AMS verification requires a unique mix of digital methodology with analog expertise. The
methodology used at EM Microelectronic to verify our latest RF ASIC utilizes the Synopsys VCS AMS
tool combining the CustomSim analog solver with the VCS digital simulator for true chip-level
verification. Our methodology features a SystemVerilog testbench wrapping the spice and AMS
analog circuits. The chip-level tests are self-checking and executed from the command line, allowing
the entire test suite to be run as a regression. The SystemVerilog testbench probes currents and
voltages directly using the $snps_get_volt and $snps_get_port_current system tasks to ensure
specification compliance. The measured voltage/current is passed to a checker function, along with
allowed ranges to account for variability in the measurement. In addition to incrementing an error
counter, in the case of an error, the checkers also increment a “correct” counter in the case of a correct
check. In addition to checking for 0 errors, the expected correct count for each test is also checked,
ensuring that the test completed and was checked as expected. Using TCL commands, the simulations
can be run as AMS (to verify the chip) or digital (to debug the SystemVerilog transactors
communicating with the ASIC.)

1.1 System Description

A block diagram of the RF ASIC is in Figure 1. The analog block contains two oscillators, an always-
on slow oscillator and a fast oscillator, which operates only during transmit or receive of RF. The
system uses one internal voltage regulator and connections for a 2nd through the V_VDD/BASE/VSS
pads. The analog uses a resonator connected through the RES_IN and RES_OUT pads for receiving
and transmitting at RF frequencies. The digital is responsible for booting from the Non-Volatile
Memory (NVM), Manchester decoding incoming data, Manchester encoding transmit data, and
implementing test modes.

SNUG 2019

Page 5 Chip-Level verification of an RF ASIC with CustomSim/VCS

VSS

Test
Clock

RF_RX

RF_TX

VDD

RES_
OUT

RES_
IN

BASE

Test
Pads

Digital

Analog

RececiverTransmitter

Slow OscFast Osc

NVM

PORRegulator

Figure 1: Block Diagram of RF ASIC

2. Methodology

Due to the very long run time of chip-level AMS simulations it is important for all interested parties
to agree on what functionality will be tested. The goal is not to verify analog functionality. That is
what analog simulations are for. Likewise, there is no reason to verify digital functionality in an AMS
simulation. The focus should be on verifying connectivity between digital and analog and device
startup.

Another important decision, is at what level will the analog blocks be represented. For example,
transistor-level models of oscillators lead to long simulation times due to the continuous and high
frequency oscillations. Keeping as many oscillators as possible in the digital domain will result in
greatly improved simulation times. Usage of transistor-level memory models may also lead to long
simulations times or non-convergence. An RTL-level model of the digital logic will simulate faster
than a gate-level representation. For a startup test, though, perhaps all analog blocks and pads will
be represented as transistors.

It is not necessary to go through the startup sequence for the voltage regulator, power-on-reset
(POR) circuitry, etc. for every test. Instead, use an initial condition to set the regulator output to the
expected regulated voltage and toggle POR.

Many tests were required to verify the myriad of test modes. The test modes are entered by a
lengthy sequence by the Test Transactor on the Test Bus as shown in Figure 2. Due to the simulation
time being dominated by these transactions, over 90% for some scenarios, it is imperative to get
them correct prior to running an AMS simulation. Be sure to have a switch to run a quick digital
simulation to debug these transactions. All chip-level tests were executed at the command line and
were self-checking, a necessity for regression testing.

The goals of the verification methodology are:

 Follow the chip-level test plan
 No hand hacking of netlists, scripts, etc.
 Tests can be run as an unattended regression

SNUG 2019

Page 6 Chip-Level verification of an RF ASIC with CustomSim/VCS

 Tests are self-checking as much as possible

To this end the workflow is:

1) Generate a top-level Spectre netlist from the schematic in Cadence Virtuoso
2) Execute a perl script to modify the top-level analog netlist. This includes:

a. Fix paths to the Physical Design Kit (PDK)
b. Include the proper NVM content
c. Add a top-level sub-circuit definition so the top-level netlist can be instantiated in the

Spectre wrapper.
d. Comment out all Spectre simulator options

3) Execute a top level run script with a test name and a seed

3. Environment

 The chip-level verification environment is depicted in Figure 2. The Test Transactor puts the ASIC
into the desired test modes, sets fields, and reads status. The RF transactor acts as the radio to
provide RF communication, albeit at a slower modulation rate than specified. The PnP circuit is used
as an external voltage regulator and is specified in the customer’s Bill of Materials (BOM). The ability
to overdrive the PnP regulator by a DC source, controlled by vdd_overdrive, is provided in order to
avoid simulating the PnP circuit, thereby improving simulation performance. A spectre wrapper
connects all analog components.

ASIC

VSS

Test
Bus

Test
Transactor

RF
Transactor

RF
Bus

 Testbench (SystemVerilog)

RF_RX

RF_TX

V_VDD

RES_
OUT

RES_
IN

BASE

 Wrapper (Spectre)

DC Test
Clock

Test
Pads

Resonator
(Verilog-A)

PnP Regulator
(Spectre)

D
C

vdd_overdrive

Figure 2: Chip-Level Testbench

SNUG 2019

Page 7 Chip-Level verification of an RF ASIC with CustomSim/VCS

A high-level overview of the scripting environment, which will be explained in more detail in later
sections, is in Figure 3. The test name and seed are provided to the top level run script, runVcsAms,
which modifies the top-level analog netlist and builds and executes the VCS command line. The VCS
command line specifies the mixed signal simulation control file, by default vcsAD.init. The vcsAD.init
script specifies the characteristics of the digital to analog (D2A) and analog to digital (A2D)
converters and builds and executes the XA command line. The CustomSim/VCS simulator uses XA to
solve the analog portions of the circuit while VCS solves the digital. The XA command line specifies
the CustomSim control file, by default xa.cfg. The xa.cfg file specifies the simulation level (i.e. speed
and model complexity trade-off) and the signals to be probed. At this point the simulation runs, a
vcs.vpd file is created for viewing digital probes, and the xa.fsdb file is created for viewing analog
probes.

runVcsAms vcsAD.init
Build/Execute
VCS command

test name

seed

Modify
netlists

Build/Execute XA
command

Specify A2D and
D2A

xa.cfg

Specify sim
level

Specify
probes

vcs.vpd
xa.fsdb

Figure 3: Scripting flow

3.1 Run script

A top-level C-shell (CSH) run script, runVcsAms, is used to invoke a simulation. The script only has
two options, the seed and test name. These options are passed to the Synopsys VCS command by
using the –pvalue option as seen in Figure 4. The syntax to specify the testname is a bit tricky because
it is desired for the test name to remain a string. The CSH syntax necessitates 3 backward slashes to
maintain the quotes.

Figure 4: Specifying the seed and command line to VCS

3.2 Mixed-Signal simulation control file

The mixed-signal simulation control file, by default vcsAD.init, serves the following purposes in the
chip-level verification environment:

 Specify the bus format of vectors
 Specify the analog solver and options
 Specify the restore file
 Specify the characteristics of the D2A and A2D converters

Each of these tasks are elaborated in the following subsections.

3.2.1 Specify the bus format of vectors

The top-level analog netlist uses the vector format <signal_name>\<index\>, for example, a 2-bit
vector called my_trim would be represented as the following:

To properly interpret these vectors the bus format must be declared in the mixed-signal simulation

SNUG 2019

Page 8 Chip-Level verification of an RF ASIC with CustomSim/VCS

control file with the following statement:

3.2.2 Specify the analog solver and options

The mixed-signal simulation control file uses the choose command to specify the analog solver and to
pass command line options to the solver. For example, to use the XA solver, as was desired in this
project, the following command is used:

The –tcl option specifies that the TCL interpreter should be used for the CustomSim control file, xa.cfg,
specified by the –c option. The –mt <#> option specifies the number of CPU cores to use. Note that
using extra CPU cores might require extra licenses. The –spectre <spectre file> option specifies the
name of the input netlist in Spectre format.

3.2.3 Specify the restore file

If a restore file was saved, as will be described in subsection 3.3.3 it can be used to restore the
simulation by adding the following option to the XA command line as described in subsection 3.2.2 .
Note that even though the .ic file is specified the .ic.sup file is also needed.

3.2.4 Specify the characteristics of the D2A and A2D converters

The digital logic shown in Figure 1 operates from a regulated voltage, typically 1.65V. All digital
outputs should be converted by the D2A conversion to approximately 1.65V for a logic-1. However,
when observing the voltage of a logic-1 digital output in a simulation it was found to be 3.3V as shown
in Figure 5 where [digital output] is the digital signal and [v(digital output)] is the analog signal after
D2A conversion.

Figure 5: Digital output using defaults for D2A converter

Examination of the simv.msv/interface_element.rpt report revealed that 3.3V was chosen as the logic-
1 voltage, as seen below, because the CustomSim tool assumes a 3.3V supply if it cannot trace a d2a
net to an ideal supply

SNUG 2019

Page 9 Chip-Level verification of an RF ASIC with CustomSim/VCS

To fix this issue it is necessary to specify vdd for the digital output D2A converters in the mixed-signal
simulation control file as shown below.

The vdd and vss paths specify the reference supply to associate to logic-1 and logic-0 values. In this
way, the conversion from logic-1 or logic-0 to voltage, uses the actual regulated supply or ground to
the digital. The hiv and lov parameters specify that a logic-1 is 100% of the vdd voltage and a logic-0
is 0% of the vdd voltage. The minv parameter specifies the vdd voltage at which the D2A conversion
turns off, in this case 0.1V, saving simulation time. The minv_analog parameter specifies the analog
output when the D2A converter is off, in this case 0V. After adding this command, the digital output
voltage is correct as shown in Figure 6 and the simv.msv/interface_element.rpt report is as expected.

Figure 6: Digital output specifying range for D2A coverter

The digital logic shown in Figure 1 operates from a regulated voltage, typically 1.65V, so a voltage
above 70% of the regulated voltage should be converted to a logic-1 and a voltage below 30% of the
regulated voltage should be converted to a logic-0. Voltages in-between should be converted to Z.
However, according to [3], if the parameters of the A2D conversion are not specified, a voltage above
50% of VDD is a logic-1 and a voltage below 50% of VDD is a logic-0. The default behavior does not
model a CMOS standard cell well. In addition, as was the case for D2A conversion, the supply is
assumed to be 3.3V as seen in the simv.msv/interface_element.rpt report below.

The default behavior results in the erroneous behavior shown in Figure 7 in which an analog input
to the digital is slowly ramping from 0V to 1.6V. However, the A2D conversion does not see a voltage
over 1.65V and converts the signal to a logic-0. In Figure 7, [v(digital input)] is the analog signal and
[digital input] is the digital signal after A2D conversion.

Figure 7: Digital input using defaults for A2D converter

To correct this issue the code in Figure 8 is added to the vcsAD.init file. Note that it mirrors the

SNUG 2019

Page 10 Chip-Level verification of an RF ASIC with CustomSim/VCS

solution for the D2A issue noted above by specifying the digital vdd and vss pin.

Figure 8: Addition to vcsAD.init for correct a2d operation

In addition, the logic-0 and logic-1 thresholds are specified as 30% and 70% of vdd, respectively.
Similar to the minv_analog parameter for the D2A converter, the minv parameter is used for the A2D
converter and specified to be 100mV. This causes the A2D conversion to turn off, saving simulation
time, when the analog supply is below 100mV. The minv_logic parameter specifies the output of the
A2D converter when the minv criteria is met, i.e. the analog supply is below 100mV. The default is
logic-Z and is changed to logic-0. Lastly, the midv_time and midv_logic parameters specify the logic
value as Z when the analog input to the digital is between 30% and 70% of vdd for greater than 10ns.
The default for midv_logic is logic-X.

 Using the A2D specification in Figure 8 results in the waveform in Figure 9, which meets the
requirements for the conversion. The digital input is logic-0 until the input voltage exceeds 30% of
vdd and remains logic-Z until the input voltage exceeds 70% of vdd, at which time the digital input is
converted to logic-1.

Figure 9: Digital input using correct specification for A2D converter

3.3 CustomSim Control File

The CustomSim control file, by default xa.cfg, serves the following purposes in the chip-level
verification environment:

 Read a TCL script to specify the digital representation
 Set the simulation accuracy
 Save the state to restore
 Specify currents and voltages to probe

Each of these tasks are elaborated in the following subsections.

3.3.1 Read a TCL script to specify the digital representation

An RTL representation of the digital is used for most tests, but to measure current consumption,
including the digital, a post-layout physical netlist with Standard Parasitic Extraction Format (SPEF)
is used. A physical netlist contains power and ground connections and the underlying representation
of the digital standard cells is a schematic, not a Verilog description of a standard cell. To choose

SNUG 2019

Page 11 Chip-Level verification of an RF ASIC with CustomSim/VCS

between the two representations on a test-by-test basis the runVcsAms script creates a tcl file
specifying the digital representation. For example, if it is desired to run a gate level representation
runVcsAms executes the following:

TCL script sim_vars.tcl is then read by the CustomSim control file as seen in Figure 10. The
set_waveform_sim_stat command dumps simulation statistics to the waveform output file [4]. Figure
11 shows the simulation statistics for a simple startup test. As expected, more memory and CPU
resources are utilized when V_VDD is ramping and por_n releases.

The load_verilog_file command loads the physical Verilog netlist. The load_ba_file command loads the
SPEF file and the –report_no_ba 2 option will report any missing SPEF nets. A message is displayed if
an undefined digital representation is requested.

Figure 10: TCL CustomSim Control File

Figure 11: Simulation statistics from set_waveform_sim_stat

SNUG 2019

Page 12 Chip-Level verification of an RF ASIC with CustomSim/VCS

3.3.2 Set the simulation accuracy

The speed and model complexity tradeoff for the simulation, i.e. the accuracy, is set globally to 5 by
the following statement.

A sim level of 5 is recommended as a good tradeoff between accuracy and simulation speed and this
was found to be true.

The simulation accuracy can be set on a specific instance as well which, if parsed later in the xa.cfg
file, overrides the global setting. This feature was used to set the simulation accuracy of the digital
logic to 3 with the following statement.

Other simulation accuracy settings are commented out by default. These statements will be
uncommented by the runVcsAms script when needed, for example, when the RF is being simulated.

3.3.3 Save the state to restore

For many tests the activity up to and including the boot is identical. In these cases, saving the
simulation activity to this point in time once and then restoring the activity for each test will reduce
the simulation time. In this way, the time up to the boot does not have to be re-simulated. To save
the state the following statement was used.

The argument to –time is the simulation time to save the state. The argument to –file is the desired
state file name without extension, for example, state_5ms. This will create two files, state_5ms.ic and
state_5ms.ic.sup. Both are required to restore the state.

In section 3.2.3 it was shown how to restore the saved state.

3.3.4 Specify currents and voltages to probe

Lastly, the CustomSim control file is used to specify the current and voltages to probe so they can be
examined in a waveform viewer. The addition of probes will add to simulation time so an intelligent
tradeoff between observability and simulation time must be achieved. Typically, specific signals are
probed as opposed to all signals within a block. For example, to probe the slow oscillator voltage the
following statement was used. The argument to –v specifies the node name:

Probing currents is similar. For example to probe the current of the supply for the slow oscillator,
the following statement is used. The argument to –isub is the subcircuit port:

To probe voltages for all signals at a specified hierarchy the following statement is used.

Setting the –port argument to 1 causes a wildcard character to match the sub-circuit port name. The

SNUG 2019

Page 13 Chip-Level verification of an RF ASIC with CustomSim/VCS

–limit option (not shown) specifies the hierarchy level to which voltages are probed when a wildcard
character is used. The default limit is 3. This means that if <instance path> is greater than a depth of
3, starting from the testbench, nothing will be probed. If <instance path> is a depth of 3 all I/O and
internal variables of <instance path> will be probed but no hierarchy below will be probed.

3.4 Testbench

The testbench was developed in SystemVerilog. In Figure 12 is the testbench module declaration. It
has two parameterized arguments, the seed and the test name. The seed has a default value of 0 but
the test name does not, requiring the user to supply a test name. The seed and test name are passed
in by the top level CSH script.

Figure 12: Testbench module declaration

The testname is then used in a case statement to call the appropriate task. The task executes the test.
For example, the code in Figure 13 accomplishes the following tasks.

 Uses the SystemVerilog $timeformat statement to specify that time shall be printed in units
of 10-9 seconds, 1 digit to the right of the decimal point, string to print after the time value,
and minimum field width. [1][2]

 Displays the test to be run along with the seed
 From the string TESTNAME call the appropriate task, in this case only test/task trim_test is

shown
 Displays an error if an unrecognized TESTNAME is specified
 Calls $finish to exit the simulation

Figure 13: Calling the selected test task

The testbench also automatically checks for specification compliance to accomplish a self-checking
testbench. Throughout the test calls are made to $snps_get_volt and $snps_get_port_current as seen
below.

SNUG 2019

Page 14 Chip-Level verification of an RF ASIC with CustomSim/VCS

The functions check_real_volt and check_real_curr are shown in Figure 14. The string input checked is
used to display what is being checked. Note that these functions track both the error and correct
count. The correct count is useful to ensure the test has executed fully and checked what was
expected.

Figure 14: Functions to check a real voltage and real current

3.5 Replacing the PnP regulator

The testbench has the ability to drive voltages to the Spectre wrapper. For example, if the test wanted
to speed up the simulation by removing the PnP regulator and use the vdd_overdrive source instead,
the following would occur:

1) The runVCSAms script uncomments the following line in the Spectre wrapper

2) The test task in the testbench ramps vdd_overdrive. For example to ramp V_VDD to 1.65V in 1ms
the following code is used:

SNUG 2019

Page 15 Chip-Level verification of an RF ASIC with CustomSim/VCS

3) The vdd_overdrive real variable is connected to the wrapper in the SystemVerilog testbench:

4) The runVCSAms script replaces the connections to the PnP regulator with DUMMY connections in

the Spectre wrapper. It is important to not simply comment out the PnP regulator because any
references to the instantiation would cause a compile error.

3.6 Supporting digital only tests

To debug Test Transactions quickly it is desirable to be able to run a digital-only test using the VCS
engine only, not XA. To accomplish this a separate script, runVcs, was developed. In this script vlogan
is called with +define+DIG_ONLY. The SystemVerilog testbench uses this define to a) not compile any
analog-specific code and b) instantiate the digital block only.

3.7 NVM stuffing

Operational settings are read from the NVM at boot. To verify different settings the ability to “stuff”
the NVM was developed. A perl script takes as input the netlist of an un-programmed NVM and the
desired bits to change. The perl script then modifies the netlist to define the state of the desired
memory cell bit(s).

3.8 RF Verification

The RF receive path was verified with a 100MHz amplitude modulator. This frequency is well below
the specified modulation frequency, but was a good tradeoff between simulation speed and
stimulating the RF. The instantiation of a Verilog-A model of the AM modulator is below. Input
rf_rx_voltage is the input signal and is driven in the SystemVerilog testbench as type real.

Similarly, to verify the RF transmit path the resonator shown in Figure 2 was also operated at
100MHz.

4. Results, debug, and improvements

In this chapter, the overall results are presented along with debug hints, what did not go well, and
future improvements.

The chip-level test plan was followed and resulted in a first pass success. The current as simulated
closely approximated the silicon measurement. Approximately 40 AMS tests were written. Re-
running all simulations on a 4-core compute server took about 3 weeks. The self-checking features
implemented were invaluable. Re-checking 40 tests visually is error-prone and excessively time
consuming.

SNUG 2019

Page 16 Chip-Level verification of an RF ASIC with CustomSim/VCS

4.1 Debug using the simv.msv directory

The simv.msv directory contains a number of invaluable files for debug [3]. This section will explain
the most noteworthy ones.

4.1.1 interface_element.rpt

This report lists all signals crossing the analog/digital interface and requiring an A2D or D2A
converter along with the parameters controlling the conversion. This file was used to debug the
issues described in subsection 3.2.4 . In addition, bidirectional interface nodes are also listed in this
file. The real type values in the SystemVerilog testbench, such as rf_rx_voltage described in section
3.8 , use a r2e converter to convert from a real type to an electrical type. Signal rf_rx_voltage is a
bidirectional signal.

4.1.2 names_map.rpt

This report lists how signal names are mapped when a child Verilog or VHDL module is instantiated
in a parent SPICE netlist. This is particularly useful for determining the analog signal to probe that is
connected to a digital I/O. For example, consider the following Verilog module my_dig instantiated
as shown in a Spectre netlist. The names_map.rpt file would contain <path to slow_osc>:<path to
net60>. For a module with many signals and vectors this is very helpful.

4.1.3 port.rpt

This report is similar to the names_map.rpt report but reports the mapping between modules and
sub-circuits at the same level, i.e. child to child, as opposed to parent to child.

4.2 What did not work well

In this chapter is an explanation of issues that were encountered and workarounds.

4.2.1 Usage of snps_above() or snps_cross() slows the simulation

The snps_above() and snps_cross() statements were initially used in the SystemVerilog testbench.
These commands generate a digital event that allows the testbench to react when the voltage of the
specified signal has gone above or below the specified threshold. The event can be used in a Verilog
always block to trigger execution. The author found that these statements had a large negative
impact on simulation performance. This is expected, considering that the simulator is simply
sampling the signal and looking for the event criteria. The sampling rate cannot be specified to
snps_above() and snps_cross(). To work around this limitation of snps_above() an alternative was
developed. The SystemVerilog code and how to call the task is in Figure 15. The event above_thresh
is triggered and the forever loop exits when the specified node is above input threshold, otherwise
time is advanced by input sample_period. If the specified node does not rise above input threshold by
the time specified by input timeout, all threads are killed and the task exits.

SNUG 2019

Page 17 Chip-Level verification of an RF ASIC with CustomSim/VCS

Figure 15: Sampling task for voltage above threshold

4.2.2 Confusing probe_waveform_* statements

The –limit option to a probe_waveform_* statement should start at the level of the path specified. For
example –limit 0 would probe all signals at the instance path specified. The user should not have to
count the hierarchy.

The –vall <instance name> option to probe_waveform_voltage is documented to specify the name of
the instance at which the voltage of all terminals are probed[4]. However, the following statement in
the CustomSim control file resulted in no signals being probed and no skipped signal messages.

Similar issues were encountered with probe_waveform_current. It was difficult to probe multiple
currents with a single statement.

4.3 Improvements

The first improvement would be automatic generation of the top-level netlist. This was the only
manual task required in order to run a simulation. In addition, automatic alerts when a schematic
changes would also be helpful.

The second improvement would be to collect functional coverage through SystemVerilog
covergroup’s. Functional coverage would be an additional check to ensure the tests were behaving
as expected and to obtain a more complete picture of the verified scenarios.

5. Conclusions

As was stated previously, the CustomSim/VCS simulator helped to ensure a first pass success. The
current measurements correlated well to silicon measurements. The simulations were of sufficient
speed to complete the chip-level verification plan.

SNUG 2019

Page 18 Chip-Level verification of an RF ASIC with CustomSim/VCS

A big thanks to Joe Perttu who was invaluable in the success the author experienced with
CustomSim/VCS and for encouraging the author to write this paper.

6. References

[1] IEEE Standard for SystemVerilog, IEEE Computer Society, Etc., 2012

[2] SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, G. Tumbush and C. Spear, 3rd
Edition, 2012

[3] Mixed-Signal Simulation Users Guide, Synopsys, Version M-2017.03-SP2, June 2017

[4] CustomSimTM Command Reference, Synopsys, Version M-2017.03-SP2, June 2017

